
Calling the GPU from GNU Octave

Daniel Kraft

WS 2009/2010

1 Introduction

In image processing (and probably in a lot of other applications as well) it is
quite commonly necessary to solve sparse linear systems defined in terms of a
“stencil” on a 2D grid (that arise from a finite difference discretization of a
differential operator like the Laplacian or Biharmonic).

I implemented solvers for a “toy problem” similar to those mentioned above
based on iterative schemes (Jacobi iteration and Conjugate Gradient method)
on a GPU (using the CUDA programming interface).

One main goal was to allow these solvers to be called from within GNU
Octave code, because this RAD (rapid application development) environment is
both nice to use for the higher level routines of an image processing application
and there’s already a lot of existing code that might benefit if some bottle-neck
parts could be migrated to compiled code running on a GPU without introducing
the need to port the whole system over to C. So this will hopefully also give
some general results about the possibility to integrate GPU code with GNU
Octave.

2 Problem Statement

For the example problem, we assume that u : Ω ⊂ R2 → R is an image and that
we measured ũ = Ku + n, which is blurred (via the operator K) and has noise
n added. We want to reconstruct u from ũ by minimizing this functional:

J(u) =
∫

Ω

(Ku− ũ)2dx + µ

∫
Ω

|∇u|2 dx

where µ > 0 is a regularization parameter. For my tests I chose µ = 10−3.
It can be found that the necessary optimality condition (i.e., the equation

solved by our restored image) is given by this PDE:{
−µ∆u + K2u = Kũ Ω

∂u
∂n = 0 ∂Ω

Note that this method of “least squares” is not the very best for image
denoising and in fact probably not appropriate for production use because it
smoothes the whole image a lot (which is fatal to edges of course, that are
prohibited by the |∇u|2 term).

1

In addition, the assumption of a blurred image by operator K is something
that’s also more of an exercise element than something helping to make this a
general-purpose image denoising application — but that’s the “toy problem” I
worked on for my project anyways. (In fact it’s really based on a homework
problem from Numerik I by Professor Keeling, which may help to clear some
mysteries about choice of some particular details.)

3 Discretization

For a numerical solution (and real images), we consider Ω to be an N ×N grid
of pixels, i.e., Ω = {x1, . . . , xN}2 with xi = i

N . I will consider the discretized
image u to be a kind of N ×N matrix and denote single pixels by uij .

In order to take the homogenous Neumann boundary conditions into ac-
count, we can add a “margin” of ghost pixels around the real image, such that
for instance u0i = u1i and similarly for the other edges.

Then a possible definition of the blurring operator K (and the one I’ll use)
is to build the weighted mean of the pixel operated on and its four neighbours,
like

(Khu)ij =
4uij + ui−1,j + ui+1,j + ui,j−1 + ui,j+1

8
which can be represented by a “5-point-stencil”. Because of the ghost pixels,
on the boundary one or two neighbours have by definition the same intensity as
the center pixel, and then we get a factor of 5 or 6 instead of the 4.

Note however that K2 has a much larger stencil — because of this and as K
is not very important anyways, I will “approximate” K2 by K in the optimality
system. It would probably be better to set K = I instead for a real world
application, but doesn’t matter for my purpose of experimenting with GPU
solvers; and at least we get some reasonable results this way, too.

Next, we need to discretize the Laplacian. With h = 1
N , the finite difference

approximation I used is given by this:

(∆hu)ij =
ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4uij

h2

where we again have to take the ghost cells into account for pixels on the bound-
ary, but now this has the effect of reducing the factor of 4 to 3 or 2.

This is of course also a “5-point-stencil” and thus the final operator A =
−µ∆h + Kh is again of this form. To find the solution image, we need to solve
the linear system Au = b with b = Khũ.

So my task was to develop a solver for a sparse linear system defined via a
(5-point) stencil. In particular, the exact system has these stencils for inner,
edge and corner cells, respectively (possibly rotated to fit the situation):

0 1
8 −

µ
h2 0

1
8 −

µ
h2

4
8 + 4µ

h2
1
8 −

µ
h2

0 1
8 −

µ
h2 0

× 1
8 −

µ
h2 0

× 5
8 + 3µ

h2
1
8 −

µ
h2

× 1
8 −

µ
h2 0

2

× × ×
× 6

8 + 2µ
h2

1
8 −

µ
h2

× 1
8 −

µ
h2 0

4 Implementation of Stencil

For solving such a stencil-defined system with an iterative scheme it is important
to “know” the stencil (and have the ability to apply its action to some vector) of
course. I tried to make the implementation both efficient and flexible, meaning
that

a) the values of the stencil (and ideally also its structure) is kept in one place
and in a way that makes it easy to change and adapt to other problems
with a different stencil, and

b) still allow efficient (i.e., inlined/compiled instead of “interpreted”) appli-
cation and usage of the stencil.

My implementation defines the stencil in a seperate source-file (stencil def.inc)
consisting of C preprocessor macro invocations defining the stencil with blocks
like this:

STENCIL_START(0, row >= 1 && row + 1 < N && col >= 1 && col + 1 < N)
STENCIL_FIELD(-1, 0, NEIGHBOUR_VALUE)
STENCIL_FIELD(1, 0, NEIGHBOUR_VALUE)
STENCIL_FIELD(0, -1, NEIGHBOUR_VALUE)
STENCIL_FIELD(0, 1, NEIGHBOUR_VALUE)
STENCIL_CENTER(CENTER_VALUE(4))

STENCIL_END

which defines the “inner cell” stencil — that is to be applied if the condition
on row/col of the current cell given in the STENCIL START arguments holds.
NEIGHBOUR VALUE evaluates to 1

8−
µ
h2 and CENTER VALUE(4) to 4

8 + 4µ
h2 of course.

There’s a distinction between the coefficient of the center and of outer fields,
because for a Jacobi iteration we need to differentiate between the “diagonal”
(i.e., center coefficients) and “off diagonal” elements (i.e., other cells in stencils).

The edge and corner stencils are defined just the same way of course, with
corresponding conditions and modified coefficients.

This is (in my opinion) a somewhat compact format to define the stencils; it
is obviously not very dynamically modifiable (except if the coefficients refer to
variables that are changed, which is a possibility), but that’s not needed here
anyways. But it can also be turned into “inlined” code where it is used with
appropriate definitions for the macros invoked. This (pseudo-)code shows how
to do this to implement a step in the Jacobi iteration:

procedure jacobi_step (in x[N][N], in b[N][N], out xNew[N][N])
for row, col = 1, ..., N
result = b[row][col]

#define STENCIL_START(num, cond) \

3

if (cond)
#define STENCIL_END \
end if

#define STENCIL_FIELD(dRow, dCol, coef) \
result -= (coef) * x[(dRow) + row][(dCol) + col]

#define STENCIL_CENTER(coef) \
result /= (coef)

#include "stencil_def.inc"

xNew[row][col] = result
end for

end procedure

Similarly it is possible to implement a direct application of the system matrix
(defined by the stencils) to some vector as will be needed for the conjugate
gradient method.

5 GPU Implementation of the Solvers

As the basic structure of my problem is two-dimensional (processing always
takes place on a “vector” representing the pixels of an image), I used also a
two-dimensional structure of CUDA threads per block and blocks in the grid.

The basic strategy is then to process a square part of the image in parallel by
a block of threads co-operating. After this is done, depending on the problem
size and the size / numbers of blocks, the block may go on to do another part
of the image. The basic code structure is like this for all kernels I implemented
working on the image:

const myRow = threadIdx.y
const myCol = threadIdx.x
const firstRow = BLOCK_SIDE * blockIdx.y + myRow
const firstCol = BLOCK_SIDE * blockIdx.x + myCol
const increment = GRID_SIDE * BLOCK_SIDE
const iterations = ceil (N / inc)

for i, j = 0, ..., N - 1
const row = firstRow + i * inc
const col = firstCol + j * inc

... process image[row][col] ...
end for

where BLOCK SIDE and GRID SIDE are the “side-length” of the blocks (in threads)
and grid (in blocks) and N is the side-length of the image to process.

This strategy (hopefully) allows memory-accesses to be coalesced, because
in each block there’s a full “column” of threads that access pixels contiguously
in memory. Note that the image is stored in column-major order (as is usual
for, e.g., Fortran) in memory because this is also what GNU Octave does and I
want to interface to that directly.

4

5.1 Jacobi-Iteration

The implementation of Jacobi iteration for solving the linear system is based
on a kernel routine that performs a single iteration; this kernel is then called
repeatedly from the CPU, but without transferring data between CPU and
GPU, i.e., the image and updated image are always kept in GPU memory only.

For a Jacobi iteration based on the 5-point stencil, each pixel value is needed
four times (in calculating the Jacobi update to the four neighbouring pixels) and
thus I fetch the old values corresponding to the current thread block in shared
memory for faster access to them (of course, more precisely I have to fetch the
block plus a margin of extra-pixels around it — i.e., an area of BLOCK SIDE +
2 × BLOCK SIDE + 2 pixels).

5.2 Conjugate Gradient

I implemented a plain CG without preconditioning for simplicity in this project
(but one could have used the system matrix’ diagonal as a simple preconditioner,
for instance).

At the heart of CG, we have to apply the system matrix to a vector — this is
done just in the same structure as the Jacobi iteration described above, because
those two operations are indeed very similar (from an implementation point of
view).

The other key operations needed are performing an inner product of two vec-
tors, for which I used the CUDA example code, and a simple SAXPY operation
(z = x + αy) that is implemented very naively with a simple kernel.

With those three kernels available, the CG algorithm itself is run on the
CPU, calling the GPU as necessary to perform those operations. Again, while
the CPU does all the main “controlling”, all vectors are only kept in GPU
memory all the time as it is not necessary to transfer them at each step.

6 Interfacing from GNU Octave

GNU Octave allows one to implement functions in C++ via so-called “.oct
files” — the concept is basically to write the function using the object-oriented
Octave library for accessing the arguments and building the return values as
appropriate objects to hand back to the Octave runtime, and this code is then
compiled via a special wrapper mkoctfile around GCC into a shared library
that is loaded and run dynamically by Octave when the function is needed.

On the other hand, in order to use CUDA, the solver code for the GPU has
to be compiled by nvcc. My strategy was then to build a shared library with
the CUDA code by compiling it like this:

nvcc -arch sm_13 -shared -Xcompiler ’-fPIC’ [SOURCES] -o libgpusolver.so

where -arch sm 13 just allows the code to use double precision floating point
numbers which is vital because that’s also what GNU Octave uses, -shared
instructs nvcc to build a shared library instead of a stand-alone program,
and -Xcompiler ’-fPIC’ builds so called “position independent code” that
is needed for dynamic linking (at least on 64-bit systems).

5

Next, I implemented a wrapper function with the Octave interface that ac-
cepts and checks the arguments and calls into the solving routines in libgpusolver.so.
That is, it basically just acts as interface between Octave and the real solver
code, handing the data between those two. This can then be compiled by a
command like

mkoctfile -L. -lgpusolver gpusolver.cpp

which builds the file gpusolver.oct and allows the function gpusolver to be
called from within GNU Octave. Note that I had to instruct Octave where
to find the shared library (for the GPU code) via setting LD LIBRARY PATH
accordingly, i.e., executing it as

LD_LIBRARY_PATH=. octave

instead of just octave.

7 Results

I tested the code on the Core i7 “compute pc” which has an Intel Core i7 920
Quadcore processor as CPU, 6 GB main memory, a Zotac GeForce GTX 280
GPU, runs 64-bit Ubuntu 9.10 as operating system and GNU Octave 3.0.5.

Because (depeding on the application of course) sometimes absolute precision
of solves is not crucial, I chose the tolerance for CG and number of Jacobi
iterations always such that the relative error of the iterative solution ũ to the
exact solution u0 is about ‖ũ−u0‖

‖u0‖ ≈ 5 · 10−4 < 10−3.
Below are some timing results comparing times for different problem sizes N

(image is N ×N so we are solving for N2 unknowns) of solving using Octave’s
\ operator on a sparse system matrix, the two GPU implementations and the
same solvers implemented on the CPU instead as comparison. The reported
time is always the median of three runs, in order to reduce statistical errors.
The numbers of threads and blocks to use for the GPU execution is tuned to
give empirically optimal performance in the case N = 1024 and may thus be
suboptimal for smaller problems.

Note that for the “pure Octave” solver building the system matrix alone also
takes some time, which is not included in the timings. All overhead of interfacing
to Octave as well as data transfer to / from the GPU is however included in
the GPU timings (because that’s really what a user would experience of course)
— this is the reason why especially for small problems the GPU solver is quite
slow compared to a direct Octave solve.

N2 Octave GPU Jacobi GPU CG CPU GS CPU CG
162 0.8ms 2.4ms 3.1ms 2.2ms 2.2ms
642 8.5ms 5.7ms 6.5ms 6.7ms 2.8ms
2562 279.8ms 381.2ms 90.2ms 1282.8ms 88.4ms
10242 8465.2ms 93920.9ms 5091.5ms 346598.0ms 5618.3ms

Here are timings for the GPU CG solver on other problem sizes, that compare
the “full” time measured by Octave for the call (including all overheads) to the
“raw” time taken by the CG algorithm on the GPU (excluding data transfers

6

but including of course overheads of kernel calls). Their difference is (mainly)
due to data transfer overhead to the GPU but includes also some delay (which
is independent of the problem size) because of the time Octave needs for the
C++ interface call:

N2 Full Raw Overhead
322 5.17ms 2.70ms 2.47ms
1282 14.38ms 12.31ms 2.07ms
5122 644.79ms 640.69ms 4.10ms

Thus the difference due to data transfer is insignificant for large problems but
makes usage of the GPU for very small problems inefficient (as one could have
expected).

8 Conclusion

My results show that it is fairly easily possible to call GPU code from within
GNU Octave, but it is only feasible to do so if the problem size is large enough
such that the overhead for data transfer to and from the GPU is insignificant.
Obviously it is not possible to avoid it (by keeping stuff in GPU memory) across
different Octave calls, at least not very easily (an option could be to introduce
a kind of “handler” object that stores the pointer to GPU memory or the like).

Of course, the experimentally used Jacobi iteration is a very inferior iteration
method, and even Gauss-Seidel with a red-black scheme would probably give
much better results. However, the timings of Jacobi on GPU and Gauss-Seidel
on CPU (as comparison, with same number of iterations) show that the shared-
memory implementation of a Jacobi step based on the stencil is nearly 4 times
faster on the GPU, so there’s a sensible advantage over CPU here.

For CG, both GPU and CPU are somewhat on par (in my implementation
at least) which probably results from the more complicated operations needed
to perform and because not only the stencil application makes up most of the
time anymore. In addition, the GPU timings of course include the overhead of
data transfer, while the CPU can work directly with the memory supplied by
GNU Octave without any need to copy; this difference is only sensible for very
small problems, though.

But it seems to me that using the GPU similarly to what I tried out may
well be a worthwhile option to get rid of bottle-necks in existing Matlab or
Octave codes — even when it comes to basic linear algebra stuff; both CPU and
GPU solvers based on CG are significantly faster than a direct solve by Octave
for large problems (if only an inexact solution is necessary of course), despite
the fact, that \ is probably something very optimized (for the general purpose,
though).

7

